Harbertonford C of E Primary: Calculation policy: Years 1-6

This calculation policy is a guide for teaching the progression of calculation strategies throughout primary education at Harbertonford but does not consider any strategy to be specific for use only in particular year groups. Depth of mathematical learning at Harbertonford is achieved through undertaking and representing mathematics in concrete, pictorial and abstract forms.

Years 1\&2

	Concrete	Pictorial	Abstract
Place value	By Y2 children will be taught:		
Understanding 10s and 1s Vocabulary: Ones Tens Count on Groups Equals	Understanding teen numbers as a complete 10 and some more Complete a group of 10 objects and count more. 13 is 10 and 3 more.	Understanding teen numbers as a complete 10 and some more Use a ten frame to support understanding of a complete 10 for teen numbers. 13 is 10 and 3 more.	Understanding teen numbers as a complete 10 and some more. 1 ten and 3 ones equal 13. $10+3=13$

Altogether Sum Total Equals		One more than 4 is 5.	Learn to link counting on with adding more than one. $5+3=8$
Understanding part-part-whole relationship Vocabulary: Groups Altogether Total Add	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6 .	Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$
Knowing and finding number bonds within 10 Vocabulary: Count on More Number bonds Altogether Sum Total	Break apart a group and put back together to find and form number bonds. $7+3=10$ $7+3$	Use five and ten frames to represent key number bonds. $5=4+1$	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. b) (3) $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$
Adding by counting on	Children use knowledge of counting to 20 to find a total by counting on using	Children use counters to support and represent their counting on strategy.	Children use number lines or number tracks to support their counting on strategy.

Count on More Number bonds Altogether Sum Total Place value Ones Tens		
Adding a 1-digit number to a 2-digit number using exchange Vocabulary: Count on More Number bonds Altogether Sum Total Place value Ones Tens Exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
Adding a multiple of 10 to a 2-digit number Vocabulary:	Add the 10s and then recombine.	Add the 10s and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$

Count on More Altogether Sum Total Place value Ones Tens	$\theta \otimes \theta \theta$ 66 is 6 tens and 6 ones. $66+10=76$		$37+20=57$
Adding a multiple of 10 to a 2-digit number using columns Vocabulary: Count on More Altogether Sum Total Place value Ones Tens	Add the 10 s using base 10 and a place 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	alue grid to support.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers Vocabulary: Place value Ones	Add the 10s and 1s separately. $5+3=8$ There are 8 ones in total.	Add the 10s and 1s separately. Use a part-whole model to support. Use place value achart and base 10 to support $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$	Add the 10s and the 1s separately, bridging 10s where required. A number line can support the calculations.

Less than Fewer Count back			$9-3=6$
Finding a missing part, given a whole and a part Vocabulary: Total Less Take away Fewer Part-part- whole	Children separate a whole into parts and understand how one part can be found by subtraction.	Children represent a whole and a part and understand how to find the missing part by subtraction. $\text { (5)-4 }=\square$	Children use a part-whole model to support the subtraction to find a missing part. $7-3=$? Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model. If I know this what else do I know?
Finding the difference Vocabulary: Subtract Fewer Less Gone Count back	Arrange two groups so that the difference between the groups can be worked out. 119019 1 8 is 2 more than 6. 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .
Subtraction within 20	Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1 s	Understand when and how to subtract 1s efficiently.	Understand how to use knowledge of bonds within 10 to subtract efficiently. $5-3=2$

Place value Number bonds			
Subtracting multiples of 10 Vocabulary: Difference Take away Place value	Use known number bonds and unitising to subtract multiples of 10 . 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . If I know that $7-5=2$ then I know that 70$50=20$
Subtracting a single-digit number Vocabulary: Subtract Fewer Less Count back Difference Take away Place value	Subtract the 1 s . This may be done in or out of a place value grid. $39-3=36$	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $\begin{array}{r} T \quad 0 \\ \begin{array}{c} T \\ 3 \end{array} \\ -\quad 3 \\ \hline \end{array} \begin{gathered} 9-3=6 \\ 39-3=36 \end{gathered}$
Subtracting a single-digit number bridging 10 Vocabulary: Subtract	Bridge 10 by using known bonds. $35-6$	Bridge 10 by using known bonds. $35-6$	Bridge 10 by using known bonds. $24-6=?$

Fewer Less Count back Difference Take away Place value Number bonds	I took away 5 counters, then 1 more.	First, I will subtract 5, then 1.	24-4-2 =?
Subtracting a 2-digit number Vocabulary: Subtract Fewer Less Count back Difference Take away Place value	Subtract by taking away. 0000000000 0000000000 0000000000 0000000000 ○○O $\varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ 61-18 I took away 1 ten and 8 ones.	Subtract the 10 s and the 1 s . This can be represented on a 100 square. 68-26	Subtract the 10 s and the 1 s . This can be represented on a number line. 64-41 = ? $\begin{aligned} & 64-1=63 \\ & 63-40=23 \\ & 64-41=23 \end{aligned}$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2-digit number using place value and columns Vocabulary: Subtract	Subtract the 1 s . Then subtract the 10 s. This may be done in or out of a place value grid.	Subtract the 1 s . Then subtract the 10 s.	Using column subtraction, subtract the 1 s . Then subtract the 10 s .

Fewer Less Count back Difference Take away Place value	T 0 , 03000 $00 \varnothing \varnothing$ 08300 $\varnothing \varnothing \varnothing \varnothing$, 080 $38-16=22$		T O 4 5 -1 2 3T 0 4 5 -1 2 3 3
Multiplication	All children will be taught		
	Concrete	Pictorial	Abstract
Recognising and making equal groups Vocabulary: Groups Same Equal Represent	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Children draw and represent equal and unequal groups.	Three equal groups of 4 . Four equal groups of 3 .
Equal groups and repeated addition Finding the total of equal groups by counting in 2s, 5 s and 10 s	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$

Vocabulary: Groups Same Equal Represent Counting on Place value Repeated addition			
Using arrays to represent multiplication and support understanding Vocabulary: Groups Same Equal Counting on Repeated addition	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. $5 \times 5=25$
Understanding commutativity Vocabulary: Pattern Groups Same Equal	Use arrays to visualise commutativity I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \end{aligned}$

			$4 \times 5=20$ and $5 \times 4=20$
Learning $\times 2$, $\times 5$ and $\times 10$ table facts Vocabulary: Times tables Pattern Groups Same Equal Counting on Repeated addition	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts. $3 \text { groups of } 10 \ldots 10,20,30$ $3 \times 10=30$	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. 0000000000 0000000000 0000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	Understand how the times-tables increase and contain patterns. $\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$
Division	All children will be taught		
	Concrete	Concrete	Concrete
Sharing Vocabulary: Share Groups	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts/groups.	10 shared into 2 equal groups gives 5 in each group.
Sharing \& Grouping equally	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division.

Number line Bar model	20 divided by 4 is 5.	60			$3 \times 10=30$ so		$30 \div 10=3$
		10	10				

Years 3 \& 4

Groups of Counting on Pattern Multiples Product Lots of	องรต 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	$\begin{aligned} & 3 \times 4=12 \\ & 3 \times 40=120 \\ & 3 \times 400=1,200 \end{aligned}$		$\begin{aligned} & 40 \times 7=280 \\ & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Addition	All children will be taught the column method. Place value equipment will be used to represent additions and support mathematics where necessary. Other methods may also offer support to secure knowledge and skills. All children will be taught to add1/10/100 without exchange and then add $1 / 10 / 100$ with exchange			
	Concrete	Pictorial		Abstract
3/4-digit number + 1s, no exchange or bridging Vocabulary: Addition Place value Sum Total Altogether Increase Counting on Greater	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $\begin{aligned} & 4+4=8 \\ & 214+4=218 \end{aligned}$ Understand that when the 1 s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Use number bo $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	ds to add the 1 s .	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s . $5+4=9$ So, $245+4=249$
3 / 4-digit number + 1s with exchange Vocabulary:		Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding.		Understand how to bridge by partitioning to the 1 s to make the next 10 .

Addition Exchange Place value Sum Total Altogether Increase Counting on Greater			$135+7=$? $135+5+2=142$ Ensure that children understand how to add 1s bridging a 100. $\begin{aligned} & 198+5=? \\ & 198+2+3=203 \end{aligned}$
3-digit number + 10s, no exchange Vocabulary: Addition Place value Sum Total Altogether Increase Counting on Greater	Calculate mentally by forming the number bond for the 10 s . Add 9 to 3041. $\begin{aligned} & 3041+9= \\ & \text { make 10 } \\ & 3041+9=3040+10 \\ & 3041+9=3050 \end{aligned}$	Calculate mentally by forming the number bond for the 10 s. $\frac{98+4142}{\text { make } 100}=$ $\begin{aligned} 98+4142 & =100+4140 \\ & =4240 \end{aligned}$	Calculate mentally by forming the number bond for the 10s. $753+40$ I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793\end{aligned}$ $753+40=793$
3-digit number + 2-digit / 3 digit number, exchange required Vocabulary: Addition Place value	Use place value equipment / grids to mo required.	addition and understand where exchange is	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation.

number， exchange required Vocabulary： Count back Fewer Minus Decrease Take（away） Less Subtract Subtraction Exchange	$\text { 目 } \rightarrow \text { 咟照昌 }$	$175-38=?$ I need to subtract 8 ones，so I will exchange a ten for 10 ones．		$\begin{array}{r} \frac{H T O}{16 才 15} \\ -\quad 38 \\ \hline 137 \\ \hline 175-38=137 \end{array}$
Representing subtraction problems Vocabulary： Part－part－ whole Represent Prove Check		Use bar models ＇Find the differen for comparison． Bar models can must be taken a	ent subtractions． resented as two bars used to show that a pa the whole．	Children use alternative representations to check calculations and choose efficient methods． Children use inverse operations to check additions and subtractions． I will check using addition．
Multiplication	All children will be taught times tables to 12×12 and begin with formal written methods for short multiplication			
	Concrete	Pictorial		Abstract
Understanding equal grouping and repeated	Children continue to build understanding of equal groups and the relationship with repeated addition．	Children recognise that arrays demonstrate commutativity．		Children understand the link between repeated addition and multiplication．

addition		$\begin{aligned} & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \\ & \\ & \text { anc. } \\ & 4 \times 12=40+8 \end{aligned}$	$\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$
Multiplying a 2-digit number by a 1 -digit number, expanded column method Vocabulary: Place value Pattern Multiples Product Lots of	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100 s . $\begin{aligned} & 4 \times 23=? \\ & 4 \times 20=80 \\ & 4 \times 3=12 \\ & 4 \times 23=92 \end{aligned}$	Short multiplication method
Column multiplication for 2- and 3-digit numbers multiplied by a single digit Vocabulary:	Use place value equipment to make multiplications. 26×3 There are 3×6 ones... 18 ones	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$

Factors Divisible Partition			
Understanding remainders Vocabulary: Groups Share Share equally Place value Repeated subtraction Divide Remainder Factors Divisible Partition	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \\ & 95 \div 4=23 \text { remainder } 3 \end{aligned}$

	Concrete	Pictorial	Abstract
Place value	Use place value equipment to multiply by 10,100 and 1,000 by unitising. Understand the effect of repeated multiplication by 10. Understand how exchange relates to the digits when multiplying by 10,100 $1,000$.		
Multiplying by 10, 100 and 1,000			

Factors Times tables	$15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4 . There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	$500 \times 6=3,000$ Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow \div \div+\square ?+5 \\ & 40 \rightarrow+5 \\ & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals by 10, 100 and 1,000 Vocabulary: Groups of Pattern Place value Factors Times tables	Understand division by 10 using exchange. 2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths. Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths.	Represent division using exchange on a place value grid. 1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths.	Understand the movement of digits on a place value grid.$0.85 \div 10=0.085$O \bullet Tth Hth Thth 8 \bullet 5 0 \bullet 0 $>$ $\rightarrow 5$$8.5 \div 100=0.085$

	2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.				$1 \cdot 5 \div 10=0.15$				
Round to the nearest 10 / 100 / 1000 / 10,000 Vocabulary: Place value To the neares Round up Round down Place value	use place value chart to round to the nearest 100, 1000, 10,000				Round 85,617 - To the - To the - To the - To the	\qquad 617 nearest 10 nearest 10 nearest 1,0 nearest 10	nearest 100 \qquad 0 00 000	Rounded to the nearest 1,000	Round to the nearest 10 / 100 / 1000 / 10,000
Addition	All children will be taught: column addition Place value equipment will be used to represent additions and support mathematics where necessary								

Exchange					
Subtracting decimals Vocabulary:	$£ 2.95$	(1) 1		0.010 .010 .010 .010 .01	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$
Count back Fewer Minus Decrease Take (away) Less Subtract Subtraction Exchange	£1.25 £2.95	1 $-£ 1.25=$	0.10 .1	0.010 .010 .010 .010 .01	

Multiplying 2digit numbers	Use column multiplication, ensuring understanding of place value at each stage. 34 34
by 2-digit	$\times 27 \times 27 \times 27$
numbers	
Vocabulary:	\qquad
Groups of Pattern Multiples Product Lots of Commutative Bar Model Repeated addition	
Multiplying up to 4-digits by 2-digits	Use column multiplication, ensuring understanding of place value at each stage. 143 1274
Vocabulary:	2 8 6 143×2 1 4 3 0 143×10 2 5,4 8 $1,274 \times 2$
Groups of Pattern Multiples Product Lots of Commutative Bar Model Repeated addition	

Product	8 is a cube number.		Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Understanding factors	Use equipment to explore different factors of a number.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Vocabulary: Times tables Representation Lots of Groups of Total Multiplication Division Product	$24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30.	00000000 00000 0000 000 00000000 00000 0000 000 00 0000 000 0 000 $17 \div 2=8 \mathrm{rl}$ $17 \div 3=5 \mathrm{r} 2$ $17 \div 4=4 \mathrm{rl}$ $17 \div 5=3 \mathrm{r} 2$	1 2 3 4 5 6 7 8 9 10 (11) 12 13 14 15 16 17 18 (19) 20 21 22 23 24 25 26 27 28 29 30 $(31$ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Division	All children will be taught: short and long division methods		
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds.	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting.	Use short division for up to 4-digit numbers divided by a single digit.

Equal groups Left over Remainder	80 cakes in total. They make 13 groups of 6 , with 2 remaining.			$\begin{aligned} & 683=136 \times 5+3 \\ & 683 \div 5=136 r 3 \end{aligned}$
Dividing by a 2-digit number using long division Understanding inverse operations and the link with multiplication \& division Vocabulary: Groups Share Share equally Place value Repeated subtraction Divide Remainder Factors Divisible	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model model the process. $377 \div 13=$? $377 \div 13=29$	ongside written division to	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $1 3 \longdiv { 3 7 7 }$ $-\begin{array}{r}130 \\ \hline 247\end{array}$ $-$130 1 10 $-\frac{1 \quad 7}{0} \frac{9}{29}$ $377 \div 13=29$ A slightly different layout may be used, with the division completed above rather than at

Partition Inverse Times tables			the side. $\begin{array}{r} 3 \\ 2 1 \longdiv { 7 9 8 } \\ -630 \\ \hline 168 \end{array}$ $\begin{array}{r} 38 \\ 21 \begin{array}{r} 79 \\ \hline 6300 \\ \hline \\ \hline 1688 \\ -\quad 68 \\ \hline 6 \end{array} \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Other representations and methods may include:			
Understanding the relationship between fractions and division Vocabulary: Groups Share Share equally Part-partwhole Divide	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$
Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$	Use factors and repeated division where appropriate.

